Quantitative imaging of murine osteoarthritic cartilage by phase-contrast micro-computed tomography.
نویسندگان
چکیده
OBJECTIVE The mouse is an optimal model organism in which gene-environment interactions can be used to study the pathogenesis of osteoarthritis (OA). The gold standard for arthritis research in mice is based on histopathology and immunohistochemistry, which are labor-intensive, prone to sampling bias and technical variability, and limited in throughput. The aim of this study was to develop a new technique that assesses mouse cartilage by integrating quantitative volumetric imaging techniques. METHODS A novel mouse model of OA was generated by cruciate ligament transection (CLT) and evaluated by histopathology and immunohistochemistry. Knee joint specimens were then imaged using a new technique that combines high-resolution micro-computed tomography (micro-CT) and phase-contrast optics followed by quantitative analyses. A comparative analysis was also performed in a previously established mouse model of OA generated by destabilization of the medial meniscus (DMM). RESULTS Phase-contrast micro-CT achieved cellular resolution of chondrocytes and quantitative assessment of parameters such as articular cartilage volume and surface area. In mouse models of OA generated by either CLT or DMM, we showed that phase-contrast micro-CT distinguished control and OA cartilage by providing quantitative measures with high reproducibility and minimal variability. Features of OA at the cellular or tissue level could also be observed in images generated by phase-contrast micro-CT. CONCLUSION We established an imaging technology that comprehensively assessed and quantified the 2-dimensional and 3-dimensional changes of articular cartilage. Application of this technology will facilitate the rapid and high-throughput assessment of genetic and therapeutic models of OA in mice.
منابع مشابه
Integrating Dimension Reduction and Out-of-Sample Extension in Automated Classification of Ex Vivo Human Patellar Cartilage on Phase Contrast X-Ray Computed Tomography
Phase contrast X-ray computed tomography (PCI-CT) has been demonstrated as a novel imaging technique that can visualize human cartilage with high spatial resolution and soft tissue contrast. Different textural approaches have been previously investigated for characterizing chondrocyte organization on PCI-CT to enable classification of healthy and osteoarthritic cartilage. However, the large siz...
متن کاملApplication of autofluorescence robotic histology for quantitative evaluation of the 3‐dimensional morphology of murine articular cartilage
Murine models of osteoarthritis (OA) are increasingly important for understating pathogenesis and for testing new therapeutic approaches. Their translational potential is, however, limited by the reduced size of mouse limbs which requires a much higher resolution to evaluate their articular cartilage compared to clinical imaging tools. In experimental models, this tissue has been predominantly ...
متن کاملPrevention of cartilage dehydration in imaging studies with a customized humidity chamber.
Quantitative three-dimensional imaging methods such as micro-computed tomography (μCT) allow for the rapid and comprehensive evaluation of cartilage and bone in animal models, which can be used for drug development and related research in arthritis. However, when imaging fresh cartilage tissue in air, a common problem is tissue dehydration which causes movement artifact in the resulting images....
متن کاملMicro-Scale Distribution of CA4+ in Ex vivo Human Articular Cartilage Detected with Contrast-Enhanced Micro-Computed Tomography Imaging
Citation: Karhula SS, Finnilä MA, Freedman JD, Kauppinen S, Valkealahti M, Lehenkari P, Pritzker KPH, Nieminen HJ, Snyder BD, Grinstaff MW and Saarakkala S (2017) Micro-Scale Distribution of CA4+ in Ex vivo Human Articular Cartilage Detected with Contrast-Enhanced Micro-Computed Tomography Imaging. Front. Phys. 5:38. doi: 10.3389/fphy.2017.00038 Micro-Scale Distribution of CA4+ in Ex vivo Human...
متن کاملDelayed Computed Tomography Arthrography of Human Knee Cartilage In Vivo
OBJECTIVE We investigated the feasibility of delayed computed tomography (CT) arthrography for evaluation of human knee cartilage in vivo. Especially, the diffusion of contrast agent out of the joint space and the optimal time points for imaging were determined. DESIGN Two patients were imaged using delayed CT arthrography and delayed gadolinium-enhanced magnetic resonance imaging of cartilag...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Arthritis and rheumatism
دوره 65 2 شماره
صفحات -
تاریخ انتشار 2013